DIFFERENT 4-CHANNEL ANALOG MULTIPLEXER - LOW "ON" RESISTANCE : 125Ω (Typ.) OVER 15V p.p SIGNAL-INPUT RANGE FOR V_{DD} - V_{EE} = 15V - HIGH "OFF" RESISTANCE : CHANNEL LEAKAGE ± 100pA (Typ.) at V_{DD} V_{EE} = 18V - BINARY ADDRESS DECODING ON CHIP - HIGH DEGREE OF LINEARITY : < 0.5% DISTORTION TYP. at f_{IS} = 1KHz, V_{IS} = 5 V_{pp} , V_{DD} - V_{SS} ≥ 10V, RL = 10K Ω - VERY LOW QUIESCENT POWER DISSIPATION UNDER ALL DIGITAL CONTROL INPUT AND SUPPLY CONDITIONS: 0.2 µW (Typ.) at V_{DD} V_{SS} = V_{DD} V_{EE} = 10V - MATCHED SWITCH CHARACTERISTICS : $R_{ON} = 5Ω$ (Typ.) FOR $V_{DD} V_{EE} = 15V$ - WIDE RANGE OF DIGITAL AND ANALOG SIGNAL LEVELS: DIGITAL 3 to 20, ANALOG TO 20V p.p. - QUIESCENT CURRENT SPECIF. UP TO 20V - 5V. 10V AND 15V PARAMETRIC RATINGS - INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C - 100% TESTED FOR QUIESCENT CURRENT - MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES" #### **DESCRIPTION** The CC4052 is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor #### **ORDER CODES** | PACKAGE | TUBE | T & R | |---------|--------|-------| | DIP | CC4052 | | | | | | technology available in DIP and SOP packages. The CC4052 analog multiplexer/demultiplexer is a digitally controlled analog switch having low ON impedance and very low OFF leakage current. This multiplexer circuit dissipate extremely low quiescent power over the full $\rm V_{DD}$ - $\rm V_{SS}$ and $\rm V_{DD}$ - $\rm V_{EE}$ supply voltage range, independent of the logic state of the control signals. When a logic "1" is present at the inhibit input terminal all channel are off. This device is a differential 4-channel multiplexer having two binary control inputs, A and B and an inhibit input. The two binary input signals selects 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs. ## **INPUT EQUIVALENT CIRCUIT** #### **PIN DESCRIPTION** | PIN No | SYMBOL | NAME AND FUNCTION | |-------------------|-------------------------------|-------------------------| | 10, 9 | A, B | Binary Control Inputs | | 6 | INH | Inhibit Inputs | | 12, 14, 15,
11 | 0X to 3X
CHANNEL
IN/OUT | X channels Input/Output | | 1, 5, 2, 4 | 0Y to 3Y
CHANNEL
IN/OUT | Y channels Input/Output | | 3 | COM Y OUT/
IN | Y Common Output/Input | | 13 | COM X OUT/
IN | X Common Output/Input | | 7 | V _{EE} | Supply Voltage | | 8 | V_{SS} | Negative Supply Voltage | | 16 | V_{DD} | Positive Supply Voltage | ## TRUTH TABLE | INHIBIT | В | Α | | |---------|---|---|--------| | 0 | 0 | 0 | 0x, 0y | | 0 | 0 | 1 | 1x, 1y | | 0 | 1 | 0 | 2x, 2y | | 0 | 1 | 1 | 3x, 3y | | 1 | Х | Х | NONE | X : Don't Care ## **FUNCTIONAL DIAGRAM** ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|-------------------------------|------| | V _{DD} | Supply Voltage | -0.5 to +20 | V | | V _I | DC Input Voltage | -0.5 to V _{DD} + 0.5 | V | | I _I | DC Input Current | ± 10 | mA | | P_{D} | Power Dissipation per Package | 200 | mW | | | Power Dissipation per Output Transistor | 100 | mW | | T _{op} | Operating Temperature | -55 to +125 | °C | | T _{stg} | Storage Temperature | -65 to +150 | °C | Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltage values are referred to V_{SS} pin voltage. ## **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Value | Unit | |-----------------|-----------------------|----------------------|------| | V_{DD} | Supply Voltage | 3 to 1 8 | V | | V _I | Input Voltage | 0 to V _{DD} | V | | T _{op} | Operating Temperature | -55 to 125 | °C | ## **DC SPECIFICATIONS** | | Parameter | Test Condition | | | | Value | | | | | | | | |----------------------------------|---|--|------------------------|-------------------|-----------------|-----------------------|-------------------|-------------|------|--------------|------|------|----| | Symbol | | V _{IS} | V _{EE} | V _{SS} | V _{DD} | T _A = 25°C | | -40 to 85°C | | -55 to 125°C | | Unit | | | | | (V) | (V) | (V) | (V) | Min. | Тур. | Max. | Min. | Max. | Min. | Max. | | | ΙL | Quiescent Device | | | | 5 | | 0.04 | 5 | | 150 | | 150 | | | | Current (all | | | | 10 | | 0.04 | 10 | | 300 | | 300 | μА | | | switches ON or all switches OFF) | | | | 15 | | 0.04 | 20 | | 600 | | 600 | μΑ | | | , | | | | 18 | | 0.08 | 100 | | 3000 | | 3000 | | | SWITCH | | | | | | | | _ | | | | | | | R _{ON} | Resistance | 0 <u><</u> V ₁ <u><</u> | | | 5 | | 470 | 1050 | | 1200 | | 1200 | | | | | V _{DD} | 0 | 0 | 10 | | 180 | 400 | | 520 | | 520 | Ω | | | | DD | | | 15 | | 125 | 280 | | 360 | | 360 | | | Δ_{ON} | Resistance ∆ _{RON} | 0 <u><</u> V ₁ <u><</u> | | | 5 | | 10 | | | | | | | | | (between any 2 of 4 switches) | V _{DD} | 0 | 0 | 10 | | 10 | | | | | | Ω | | | · | | | _ | 15 | | 5 | | | | | | | | OFF* | Channel Leakage
Current (All
Channel OFF)
(COMMON O/I) | | 0 | 0 | 18 | | ±0.1 | 100 | | 1000 | | 1000 | nA | | OFF* | Channel Leakage
Current (Any
Channel OFF) | | 0 | 0 | 18 | | ±0.1 | 100 | | 1000 | | 1000 | nA | | C _I | Input Capacitance | | | | | | 5 | | | | | | | | Co | Output
Capacitance | | -5 | -5 | 5 | | 18 | | | | | | pF | | C _{IO} | Feed through | | | | | | 0.2 | | | | | | | | CONTRO | DL (Address or Inhi | bit) | | I | | | | • | | | | | | | V_{IL} | Input Low Voltage | | Vee = | = V _{SS} | 5 | | | 1.5 | | 1.5 | | 1.5 | | | | | | | 1KΩ | 10 | | | 3 | | 3 | | 3 | V | | | | = VDD
thru | | √ _{SS} | 15 | | | 4 | | 4 | | 4 | | | V _{IH} | Input High Voltage | 1ΚΩ | I _{IS} < | 2μΑ | 5 | 3.5 | | | 3.5 | | 3.5 | | | | | | | ` | OFF | 10 | 7 | | | 7 | | 7 | | V | | | | | chan | nels) | 15 | 11 | | | 11 | | 11 | | | | I _{IH,} I _{IL} | Input Leakage
Current | VI | V _I = 0/18V | | 18 | | ±10 ⁻³ | ±0.1 | | ±1 | | ±1 | μΑ | | C _I | Input Capacitance | | | | | | 5 | 7.5 | | | | | рF | | | ad by minimum faasible | | | | | | | | | | | | | ^{*} Determined by minimum feasible leakage measurement for automating testing. **DYNAMIC ELECTRICAL CHARACTERISTICS** ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, all input square wave rise and fall time = 20 ns) | | Test Condition | | | | | | | | | Value |---|------------------------|----------------------------|-------------------------|---------------------------|------------------------|------------------------|--|--------|-------|-------|------------|-------|-------|-------|--------|--------|--------|-------|--------|--------|--------|-------|-------|------|--------|--------|---|-----|--|--|----|---|--|----|--| | Parameter | V _{EE}
(V) | R _L (ΚΩ) | f _I
(KHz) | V _I (V) | V _{SS}
(V) | V _{DD}
(V) | | Min. | Тур. | Max. | Propagation Delay | | | | V _{DD} | | 5 | | | 30 | 60 | Time (signal input to | | 200 | | | | 10 |] | | 15 | 30 | ns | output) | | | | | | 15 | | | 11 | 20 | Frequency Response
Channel "ON" (sine | = V _{SS} | 1 | | 5(*) | | 10 | V _O at Common
OUT/IN | | 25 | | MHz | wave input) at 20 log V _O /V _I = - 3dB | - * 55 | ' | | 3() | | 10 | V _O at any channel | | 60 | | IVII IZ | Feed through (all channels OFF) at 20 log V _O /V _I = - 40dB | = V _{SS} | 1 | | 5(*) | | 10 | V _O at Common
OUT/IN | | 10 | | MHz | 20 log V ₀ /V ₁ = - 400B | - 33 | , | | 0() | | 10 | V _O at any channel | | 8 | | 1411 12 | Frequency Signal
Crosstalk at | = V _{SS} | 1 | | 5(*) | | 10 | Between
Sections
(measured on
common) | | 6 | | MHz | Crosstalk at $20 \log V_O/V_I = -40 dB$ | | - VSS | - VSS | - VSS | - \$55 | - \$55 | - vss | - \$55 | - VSS | - \$55 | - \$55 | - \$55 | - VSS | - \$55 | - \$55 | - \$55 | - 155 | - 135 | . 33 | - • 55 | - • 55 | I | 3() | | | 10 | Between
Sections
(measured on
any channel) | | 10 | | | Circ Maus Distantion | | | | 2(*) | | 5 | | | 0.3 | Sine Wave Distortion $f_{IS} = 1KHz$ Sine Wave | $=V_{SS}$ | 10 | 1 | 3(*) | | 10 | | | 0.2 | | % | 115 - 11412 0110 11410 | | | | 5(*) | | 15 |] | | 0.12 | CONTROL (Address | or Inhi bi | t) | | | | | • | Propagation Delay: | 0 | | | | 0 | 5 | | | 360 | 720 | Address to Signal | 0 | | | | 0 | 10 |] | | 160 | 320 | OUT (Channels ON or OFF) | 0 | | | | 0 | 15 | | | 120 | 240 | ns | 0.011) | -5 | | | | 0 | 5 | | | 225 | 450 | Propagation Delay: | 0 | | | | 0 | 5 | | | 360 | 720 | Inhibit to Signal OUT | 0 | 1 | | | 0 | 10 | | | 160 | 320 | ns | (Channel turning ON) | 0 | ' | | | 0 | 15 | | | 120 | 240 | 113 | -10 | | | | 0 | 5 |] | | 200 | 400 | Propagation Delay: | 0 | | | | | 5 | | | 200 | 450 | Inhibit to Signal OUT | 0 | 10 | | | | 10 | 1 | | 90 | 210 | (Channel turning OFF) | 0 | 10 | | | | 15 | 1 | | 70 | 160 | ns | -10 | | | | | 5 | 1 | | 130 | 300 | 1 | Address or Inhibit to
Signal Crosstalk | 0 | 10 ⁽¹⁾ | | | 0 | 10 | $V_C = V_{DD} - V_{SS}$ (square wave) | | 65 | | mV
peak | ⁽¹⁾ Both ends of channel. * Peak to Peak voltage symmetrical about (V_{DD} - V_{EE}) /2